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Abstract Entropy production rate (EPR) is the fundamental theoretical quantity in
non-equilibrium thermodynamics whereas reaction rate is the primary experimental
quantity for a chemical system out-of-equilibrium. In this work, we explore a con-
nection between the above two quantities for general reaction networks. Both cyclic
and linear networks of arbitrary dimension are studied, along with a mixed variety.
The systems can attain a non-equilibrium steady state (NESS) under chemiostatic
condition, which becomes the state of true thermodynamic equilibrium when detailed
balance holds. We show that there exists a universal functional relationship of the
EPR with reaction rate close to steady states for all the networks considered. Near a
NESS, the former varies linearly with the reaction rate. On the other hand, around a
true equilibrium, it varies quadratically with the latter. Numerical experiments justify
our analytical findings quite transparently.

Keywords Entropy production rate · Non-equilibrium steady state ·
Reaction network

1 Introduction

Chemical reaction networks [1–4] have received considerable recent attention on var-
ious grounds. These include inhomogeneous catalysis [1], the emergence of positive
steady states (SS) [2], bistability [3] etc. Nonlinear networks have also found several
applications [4].

Reaction systems have continued to play a primary role in the study of irreversible
thermodynamics since inception. In such studies, entropy production rate (EPR) has
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turned out as the most basic and interesting thermodynamic quantity [5–7] to deal
with the above chemical systems, both at the time-independent (e.g., SS) and time-
dependent situations [8–10]. An SS can be a state of true thermodynamic equilibrium
(TE) when the EPR vanishes. In such a case, detailed balance (DB) is obeyed. On the
other hand, a constant positive value of the EPR refers to another kind of SS, where
DB is not obeyed. This can happen in open systems. One renders concentrations of a
few chosen species at constant values by suitable input-output mechanisms, yielding
the so-called non-equilibrium steady state (NESS) [11–14]. To state otherwise, such
systems involve some reservoirs to act as chemiostats [15,16], leading to the emergence
of SS.

Our purpose here is to explore the behavior of EPR close to some SS where the
reaction rate is non-zero and the EPR is positive, be the SS a TE or an NESS. However,
the EPR is a theoretical measure and, for complex systems, the connection of EPR with
the immediately observable quantities may not be apparent. The reaction rate, on the
other hand, stands as the primary experimental entity. Therefore, it will be helpful to
get a functional relation of the EPR σ(t) with the reaction rate v(t). This will be most
useful if the functional relation possesses a universal character. The present endeavor
is aimed at such a goal. Specifically, we show that, close to any SS, EPR can be quite
generally expressed in the form σ(t) = P + Qv(t) + Rv2(t), where P, Q and R are
constants. Only in case of a TE, P = 0 = Q. Further, the general forms of P, Q
and R for different types of networks are similar. In other words, the above functional
form possesses a sort of universality.

2 Formulation

Any complex chemical reaction network contains the part shown in Fig. 1. On the
basis of such a scheme, we can write

ȧi = −(ki + k−(i−1))ai (t) + ki−1ai−1(t) + k−i ai+1(t), (1)

with ai (t) being the concentration of species Ai at time t .
We define the SS as

ȧi = 0, ∀i. (2)

Conventionally, the reaction fluxes are defined pairwise, between nearest neighbors.
Here we define the flux Ji as

Ji (t) = ki ai (t) − k−i ai+1(t). (3)

Fig. 1 Schematic diagram of a
part of any complex reaction
network indicating the forward
and backward rate constants
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Accordingly, the thermodynamic force is defined by

X th
i = μi (t) − μi+1(t), (4)

and the corresponding kinetic one by

Xkin
i = T ln

ki ai (t)

k−i ai+1(t)
. (5)

We have set here (and throughout) the Boltzmann constant kB = 1. The EPR σ(t) is
essentially a product of all fluxes and kinetic forces, leading to

σ(t) = 1

T

∑

i

Ji (t)Xkin
i

=
∑

i

[ki ai (t) − k−i ai+1(t)]ln ki ai (t)

k−i ai+1(t)
. (6)

From Eq. (6), it is evident that σ(t) ≥ 0. In the long-time limit, σ becomes stationary
with a value given by

σ(SS) ≥ 0. (7)

The nature of the SS is characterized by

σ(TE) = 0, (8)

σ(NESS) > 0. (9)

We now focus on a situation close to the SS. For that purpose, small deviations in
species concentrations from their respective SS values are introduced as

δi (t) = ai (t) − as
i . (10)

Here {as
i } is determined by the set of Eq. (2). Then, using finite difference approxi-

mation, one gets for a short time interval τ

δ̇i = ȧi ≈ δi/τ. (11)

Now, the reaction rate v(t) can be suitably defined in terms of the rate of change of
concentration of any species Ai of the reaction network. Thus

v(t) = ȧi . (12)

In what follows, we explore whether a general relationship between σ(t) and v(t) near
a SS exists.
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3 Case studies

A wide variety of reaction networks exists. Particularly important and relevant to
chemistry are those that involve tautomeric equilibria and stereoisomerism. Broadly,
these networks can be classified as straight-chain or cyclic, with branching allowed
in either case. So, studies of a general nature should deal with cases that belong to
the above categories. Accordingly, here we apply the formalism by considering the
different situations. However, a common feature of all the cases is the presence of two
species B and C. Their concentrations are kept fixed at values b and c, respectively.
Thus, they act as chemiostats. This type of condition can be maintained by continuously
injecting B to and removing C from the reaction medium by connecting with reservoirs.
The system is thus open and an external drive exists. Therefore, the EPR is positive in
all the cases even when t → ∞. Such a mechanism allows the entry of NESS in our
discussion. However, when DB holds, the drive vanishes and TE is attained.

3.1 Cyclic network

The scheme of the cyclic network is shown in Fig. 2. The reaction system contains N
number of species whose concentrations vary with time. The kinetic equations are the
same as in Eq. (1) with the following periodic boundary conditions:

i − 1 = N , for i = 1,

i + 1 = 1, for i = N .

Here we have set k1 = k′
1b and k−N = k′−N c. So the forward rate constant k1 of

reaction i = 1 and the reverse rate constant k−N of reaction i = N are pseudo-first-
order rate constants. The net reaction flux of the i-th reaction is already defined in Eq.
(3). The expression of EPR for the reaction system shown in Fig. 2 is given by

σC (t) =
N∑

i=1

Ji (t)ln
ki ai (t)

k−i ai+1(t)
. (13)

Using Eqs. (10) and (11) in Eq. (1), we get

(
1 − (ki + k−(i−1))τ

)
δi (t) + ki−1τδi−1(t) + k−iτδi+1(t) = 0. (14)

Fig. 2 Schematic diagram of
the cyclic reaction network
indicating the forward and
backward rate constants of each
reaction. Species B and C act as
chemiostats
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As the reactions are coupled, so the δi s are related to each other and can be expressed
in terms of any one of them, say δ1. Then, one can write

δi = fiδ1, with f1 = 1. (15)

In the next paragraph, we will discuss how to determine the fi s.
The set of coupled Eq. (14), with the help of Eq. (15), can be cast in the matrix

form

Mf = 0. (16)

Here f is a N × 1 matrix with fT = ( f1, f2, . . . , fN ) and M is a N × N matrix with
the property

Mi j �= 0, for j = i, i − 1, i + 1

Mi j = 0, otherwise. (17)

The non-zero matrix elements are

Mii = (
1 − (ki + k−(i−1))τ

)
, (18)

Mi,i−1 = ki−1τ, (19)

Mi,i+1 = k−iτ. (20)

From Eqs. (16) and (17), we obtain a recursion relation

f j = − (M j−1, j−2 f j−2 + M j−1, j−1 f j−1)

M j−1, j
, j = 2, 3, . . . , N , (21)

with the boundary conditions:

f0 = fN , M j,0 = M j,N .

The first of the relations becomes

f2 = − M1N fN + M11

M12
. (22)

Then, it is easy to follow from Eq. (21) that, all the other f j s can be expressed in
terms of fN . Now, from the condition

N∑

i=1

ai = constant, (23)

we get

N∑

i=1

δi = 0, (24)
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and using Eq. (15), we have

N∑

i=2

fi = −1. (25)

From Eqs. (18)–(22) and (25), one can determine the fi s in Eq. (15).
With the above relations, we now explore the EPR near the NESS. From Eq. (1),

we have

J s
i = J, (i = 1, . . . , N ) (26)

at NESS. Then, from Eqs. (10), (13), (15) and (26) and using the smallness of δi s, the
EPR near NESS becomes

σC (t) =
N∑

i=1

(J + kiδi − k−iδi+1)

(
ln

ki as
i

k−i as
i+1

+ δi

as
i

− δi+1

as
i+1

)

= X1 + Y1δ1 + Z1δ
2
1, (27)

with

X1 = J ln

∏N
i=1 ki∏N

i=1 k−i
, (28)

Y1 =
N∑

i=1

(ki fi − k−i fi+1) ln
ki as

i

k−i as
i+1

, (29)

Z1 =
N∑

i=1

(ki fi − k−i fi+1)

(
fi

as
i

− fi+1

as
i+1

)
. (30)

We take the reaction rate as v(t) = ȧ1 here and throughout. This is due to the fact
that, all the deviations in concentration from the NESS are defined in terms of δ1.
Then, from Eq. (1) with i = 1 and using Eq. (15) along with the periodic boundary
conditions, we get near NESS

v(t) = R1δ1, (31)

where

R1 = −(k1 + k−N ) + kN fN + k−1 f2. (32)

Hence, from Eqs. (27) and (31), near NESS we can express the EPR as

σC (t) = PC + QC v(t) + RC v2(t), (33)

where PC = X1, QC = Y1/R1 and RC = Z1/R2
1 .
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If the cyclic reaction network reaches TE, then from the ratios of equilibrium
concentrations of the species, we have

ae
2

ae
1

ae
3

ae
2

· · · ae
N

ae
N−1

ae
1

ae
N

= 1 =
∏N

i=1 ki∏N
i=1 k−i

. (34)

This is the constraint on the rate constants in order to satisfy DB. Equation (34) implies
X1 = 0. When DB holds, the fluxes in Eq. (3) vanish and this leads to Y1 = 0. Then
near the TE, EPR reduces to

σC (t) = RC v2(t). (35)

In this case, RC contains equilibrium concentrations. Evaluation of the quantities
PC , QC , RC requires full description of the reaction kinetics which is a formidable
task. Still, from Eq. (35), we can gain a semi-quantitative understanding of EPR near
TE from the reaction velocity data.

3.2 Linear network

The scheme of the linear network is shown in Fig. 3. Like the cyclic network, the
system contains N number of species whose concentrations are time-dependent.

The only difference is that here the chemiostats B and C are connected only with
A1 and AN , respectively. Therefore, there are N + 1 reactions with the reaction flux
defined as

Ji (t) = ki ai (t) − k−i ai+1(t), i = 0, 1, . . . , N , (36)

with a0 = b and aN+1 = c being time-independent. At NESS, Eq. (26) holds for the
linear network, with i = 0, 1, . . . , N . The rate equations of the reaction system are
also identical to those given in Eq. (1). Defining small deviations around NESS as in
Eq. (10), one gets similar set of coupled equations given in Eq. (14). For the linear
network, however, the boundary conditions are changed to

δ0 = 0 = δN+1

as B and C are chemiostats. Applying Eq. (15) to the linear network, it follows easily
that the recursion relation for the cyclic network given in Eq. (21) is equally valid for
the linear network with

B A1 A2
AN

C
k0

k-0

k1

k-1

k2

k-2

kN

k-N

Fig. 3 Schematic diagram of the linear reaction network indicating the forward and backward rate constants.
Species B and C act as chemiostats
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f0 = 0 = fN+1.

Therefore, the expression of EPR for the linear network close to NESS becomes

σL(t) =
N∑

i=0

(J + kiδi − k−iδi+1)

(
ln

ki as
i

k−i as
i+1

+ δi

as
i

− δi+1

as
i+1

)

= X2 + Y2δ1 + Z2δ
2
1, (37)

where

X2 = J ln
a0

∏N
i=0 ki

aN+1
∏N

i=0 k−i
, (38)

Y2 =
N∑

i=0

(ki fi − k−i fi+1) ln
ki as

i

k−i as
i+1

, (39)

Z2 =
N∑

i=0

(ki fi − k−i fi+1)

(
fi

as
i

− fi+1

as
i+1

)
. (40)

Let us now define the reaction velocity of the linear network as v(t) = ȧ1 as in the
cyclic network. Then using Eq. (15) in Eq. (1) with i = 1, one obtains near NESS

v(t) = R2δ1, (41)

with

R2 = (−(k1 + k−0) + k−1 f2) . (42)

Then, from Eqs. (37) and (41), the EPR for the linear network near NESS can be
written as

σL(t) = PL + QL v(t) + RL v2(t), (43)

with PL = X2, QL = Y2/R2 and RL = Z2/R2
2.

Now we consider the case of TE. At TE we can write

ae
1

a0

ae
2

ae
1

ae
3

ae
2

· · · ae
N

ae
N−1

aN+1

ae
N

=
∏N

i=0 ki∏N
i=0 k−i

, (44)

that leads to

a0
∏N

i=0 ki

aN+1
∏N

i=0 k−i
= 1 (45)

and hence, X2 = 0. Satisfaction of the DB also means Y2 = 0. So, the EPR near TE
becomes
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Fig. 4 Schematic diagram of
the mixed reaction network
indicating the forward and
backward rate constants. Species
B and C act as chemiostats
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σL(t) = RL v2(t). (46)

We clarify that, RL in Eq. (46) is defined in terms of equilibrium concentrations.

3.3 Mixed network

We consider now a reaction network which is composed of cyclic and linear parts. The
kinetic scheme is depicted in Fig. 4. Again, the species Ai (i = 1, . . . , N ) have time-
varying concentrations ai (t). According to the scheme in Fig. 4, the kinetic equations
of the system are written as

ȧi = −(ki + k−(i−1) + k−N δim)ai (t) + ki−1ai−1(t) + k−i ai+1(t) + kN aN δim

(47)

where δ jk stands for the Kronecker delta symbol. The boundary conditions are: a0 = b,
aN+1 = am . Here the pseudo-first-order rate constant is defined as k−N = k′−N c.

For the mixed network, the equivalent of Eq. (14) is given by

(
1 − (ki + k−(i−1) + k−N δim)τ

)
δi (t) + ki−1τδi−1(t)

+k−iτδi+1(t) + kN τδN δim = 0. (48)

Using Eq. (15), the set of Eq. (48) can be expressed in a matrix form similar to
Eq. (16). The properties of the matrix M are now given as

Mi j �= 0, for j = i, i − 1, i + 1

Mi j �= 0, for i = m, j = N

Mi j = 0, otherwise. (49)

The non-zero matrix elements are

Mii = (
1 − (ki + k−(i−1) + k−N δim)τ

)
, (50)

Mi,i−1 = ki−1τ, (51)

Mi,i+1 = k−iτ. (52)

Mm,N = kN τ. (53)
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Then, one obtains a recursion relation, similar in structure to Eq. (21), as

f j = − (M j−1, j−2 f j−2 + M j−1, j−1 f j−1 + M j−1,N fN δ j−1,m)

M j−1, j
, j = 2, . . . , N ,

(54)

with the boundary conditions:

f0 = M j,0 = 0.

with f1 = 1, all the f j s can be determined following similar procedure as discussed
for the cyclic network.

At SS, it follows from Eq. (47) that

J s
i = 0, for i = 0, . . . , m − 1

J s
i = J, for i = m, m + 1, . . . , N . (55)

This is an important difference between the mixed network and the previous ones for
which Eq. (26) is valid. The expression of the EPR near NESS then becomes

σM (t) =
N∑

i=0

(
J s

i + kiδi − k−iδi+1
)
(

ln
ki as

i

k−i as
i+1

+ δi

as
i

− δi+1

as
i+1

)

= X3 + Y3δ1 + Z3δ
2
1, (56)

where

X3 = J ln

∏N
i=m ki∏N

i=m k−i
, (57)

Y3 =
N∑

i=0

(ki fi − k−i fi+1) ln
ki as

i

k−i as
i+1

, (58)

Z3 =
N∑

i=0

(ki fi − k−i fi+1)

(
fi

as
i

− fi+1

as
i+1

)
. (59)

Defining the reaction rate v(t) = ȧ1 as in the previous cases, we obtain

v(t) = R2δ1 (60)

near NESS, with R2 given in Eq. (42). Then, from Eqs. (56) and (60), near NESS the
EPR for the mixed network can be written as

σM (t) = PM + QM v(t) + RM v2(t). (61)

Here PM = X3, QM = Y3/R2 and RM = Z3/R2
2 .
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At TE, DB holds in the form

∏N
i=m ki∏N

i=m k−i
= 1 (62)

and all the fluxes vanish implying J = 0. This gives X3 = 0 = Y3. Then, from Eq.
(61) we have

σM (t) = RM v2(t). (63)

Again, RM in Eq. (63) contains equilibrium concentrations.

4 Results and discussion

In this section, we numerically verify the analytical results given in Eqs. (33), (43)
and (61). We choose a mixed network shown in Fig. 5 containing four species Ai (i =
1, . . . , 4) with time-dependent concentrations ai (t). This network can be generated
from the general scheme of Fig. 4 with N = 4 and m = 2. The rate constants are
taken as: k1 = 0.2, k2 = 0.1, k3 = 0.2, k4 = 0.3, k−1 = 0.1, k−2 = 0.3, k−3 = 0.1,
all in s−1. Following Eq. (62), DB is satisfied in this case for

k2k3k4

k−2k−3k−4
= 1.

Thus, we set k−4 = k′−4[C] = 0.2 for system reaching TE. Any other value of k−4
will lead the system to NESS. Here we set k−4 = 1.5 for that purpose. We define the
reaction rate as

v(t) = ȧ3.

Such a choice of reaction rate is convenient to allow a smooth passage from the scheme
of mixed network in Fig. 5 to a purely cyclic or a purely linear network by setting
some of the rate constants equal to zero. In this process, only the rate equation of a3
remains unchanged. As may be seen, the results derived in Eqs. (33), (43) and (61) do
not depend on the choice of reaction rate.

We show the variation of σ(t) as a function of v(t) in Fig. 6 for the network under
consideration. In all cases that follow, the EPR is determined numerically using the

Fig. 5 Schematic diagram of
the mixed reaction network
containing four species
Ai (i = 1, . . . , 4) with
time-dependent concentrations
ai (t). Species B and C act as
chemiostats
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−3k−4
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Fig. 6 Variation of σ(t) as a
function of reaction rate v(t) for
the mixed network shown in Fig.
5 for the reaction system
reaching a NESS and b TE. The
insets depict the behavior of
σ(t) near SS in respective cases
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0

0.001
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(a) (b)

Mixed network

Fig. 7 Variation of σ(t) as a
function of reaction rate v(t) for
the linear network, obtained
from the scheme in Fig. 5 with
k4 = 0 = k−4. The inset depicts
the behavior of σ(t) near TE
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0 0.01 0.02

0 0.001v(t)
0

0.005

σ(
t)

Linear network

TE

form given in Eq. (6). The case of NESS (Fig. 6a) involves a non-zero value of σ(t) at
v = 0 whereas, at TE (Fig. 6b) σ(t) = 0. These features are clearly seen in the figure.
At low v(t), it is also evident from the inset of Fig. 6a that, at first σ(t) decreases
linearly with v(t), followed by a quadratic rise, confirming Eq. (61). The inset in Fig.
6b, on the other hand, shows that σ(t) varies quadratically with v(t) near TE. This
behavior follows from Eq. (63).

We now set k4 = 0 = k−4 to generate a linear network. The concentration [B]
is kept constant at an arbitrary value. However, a comparison with Fig. 3 shows that
there is no scope of NESS now because of the absence of any reservoir at the other
extreme. Therefore, the system can only reach TE with σ = 0. The near-equilibrium
situation is nevertheless characterized by a quadratic rise of σ(t) with v(t), in tune
with the prediction of Eq. (46). Figure 7 bears testimony to these two features.

Finally, we construct a purely cyclic network from Fig. 5 by choosing k0 = k−0 =
k1 = k−1 = 0. In this case, one can imagine a sink D to exist between A2 and A3 in
such a way that A2 converts itself to A3 + D. One then finds in the cycle both a source
and a sink to sustain an NESS. As a special case, the DB can also be recovered. The
outcomes are displayed in Fig. 8 where we again notice a non-zero σ when t → ∞
along with a linear decay with v(t) as v(t) → 0 (Fig. 8a). As usual, however, the TE
is characterized by σ = 0 at v = 0 and a quadratic rise for small v(t).
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Fig. 8 Variation of σ(t) as a
function of reaction rate v(t) for
the purely cyclic network,
obtained from the scheme in
Fig. 5 with k0 = k−0 = k1 =
k−1 = 0. The reaction system
can reach a an NESS and
obviously, b TE. The insets
depict the behavior of σ(t) near
SS in respective cases
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5 Summary

In summary, we notice that the expressions of σC in Eq. (33), σL in Eq. (43) and σM

in Eq. (61) have the same structure in the small v(t) regime. This has the general
form σJ (t) = PJ + Q J v(t) + RJ v2(t), (J ≡ C, L , M), where PJ , Q J and RJ are
constants. For the special case of a TE, we also found that PJ = 0 = Q J , implying
a quadratic growth with v(t) as v(t) → 0. The coefficients PJ , Q J and RJ possess
similar forms as well. Therefore, on the basis of comparison of the expressions for
σ(t) in all the reaction networks studied, we may conclude that there exists a universal
functional relationship of the former with reaction rate close to any SS. These results
should act as steps towards the final goal of connecting the key theoretical construct
like EPR with real-life data.
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